翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

massive gravity : ウィキペディア英語版
massive gravity
In theoretical physics, massive gravity is a theory of gravity that modifies general relativity by endowing the graviton with a nonzero mass. In the classical theory, this means that gravitational waves obey a massive wave equation and hence travel at speeds below the speed of light.
Massive gravity has a long and winding history, dating back to the 1930s when Wolfgang Pauli and Markus Fierz first developed a theory of a massive spin-2 field propagating on a flat spacetime background. It was later realized in the 1970s that theories of a massive graviton suffered from dangerous pathologies, including a ghost mode and a discontinuity with general relativity in the limit where the graviton mass goes to zero. While solutions to these problems had existed for some time in three spacetime dimensions, they were not solved in four dimensions and higher until the work of Claudia de Rham, Gregory Gabadadze, and Andrew Tolley in 2010.
The fact that general relativity is modified at large distances in massive gravity provides a possible explanation for the accelerated expansion of the Universe that does not require any dark energy. Massive gravity and its extensions, such as bimetric gravity, can yield cosmological solutions which do in fact display late-time acceleration in agreement with observations.
== Linearized massive gravity ==

At the linear level, one can construct a theory of a massive spin-2 field h_ propagating on Minkowski space. This can be seen as an extension of linearized gravity in the following way. Linearized gravity is obtained by linearizing general relativity around flat space, g_ = \eta_ + M_\mathrm^h_, where M_\mathrm=(8\pi G)^ is the Planck mass with G the gravitational constant. This leads to a kinetic term in the Lagrangian for h_ which is consistent with diffeomorphism invariance, as well as a coupling to matter of the form
:h^T_,
where T_ is the stress–energy tensor.
Massive gravity is obtained by adding nonderivative interaction terms for h_. At the linear level (i.e., second order in h_), there are only two possible mass terms:
:\mathcal_\mathrm = ah^h_ + b \left(\eta^h_\right)^2.
Fierz and Pauli showed in 1939 that this only propagates the expected five polarizations of a massive graviton (as compared to two for the massless case) if the coefficients are chosen so that a=-b. Any other choice will unlock a sixth, ghostly degree of freedom. A ghost is a mode with a negative kinetic energy. Its Hamiltonian is unbounded from below and it is therefore unstable to decay into particles of arbitrarily large positive and negative energies. The ''Fierz-Pauli mass term'',
:\mathcal_\mathrm = m^2\left(h^h_ - \left(\eta^h_\right)^2\right)
is therefore the unique consistent linear theory of a massive spin-2 field.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「massive gravity」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.